

Be the best you can be, every day

Year 6

6/1 Place value in numbers to 10 million

The position of the digit gives its size

Ten millions Millions Hundred thousands Ten thousands thousands hundreds tens
8

Example

The value of the digit '1' is 10 000 000
The value of the digit '2' is 2 000 000
The value of the digit '3' is 300 000
The value of the digit '4' is 40 000

6/1 Round whole numbers

<u>Example</u> 1- Round 342 679 to the nearest 10 000

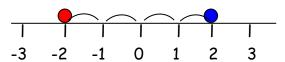
- Step 1 Find the 'round-off digit' 4
- Step 2 Move one digit to the right 2

4 or less? YES

- leave 'round off digit' unchanged
- Replace following digits with zeros

ANSWER - 340 000

<u>Example</u> 2- Round 345 679 to the nearest 10 000


- o Step 1 Find the 'round-off digit' 4
- o Step 2 Move one digit to the right 5

5 or more? YES

- add one to 'round off digit'
- Replace following digits with zeros

ANSWER - 350 000

6/2 Negative numbers

The difference between 2 and -2 = 4 (see number line)

Remember the rules:

- When subtracting go down the number line
- When adding go up the number line
- 8 + 2 is the same as 8 2 = 6
- 8 + 2 is the same as 8 2 = 6
- 8 - 2 is the same as 8 + 2 = 10

6/3 Multiply numbers & estimate to check

6/3 Use estimates to check calculations

≈ is the symbol for 'roughly equals'

6/3 <u>Divide numbers & estimate to check</u>

With a remainder also expressed as a fraction

e.g.
$$4928 \div 32$$

$$\begin{array}{r}
028\\
15)432\\
-30\\
\hline
132\\
-120\\
12
\end{array}$$
ANSWER - $432 \div 15 = 28 \text{ r } 12$

6/3 continued

With a remainder expressed as a decimal

$$\begin{array}{c}
0 & 2 & 8 \\
15 & 4 & 3 & 2 \\
15 & 4 & 3 & 2 \\
-3 & 0 \\
1 & 3 & 2 \\
-1 & 2 & 0 \\
1 & 2
\end{array}$$
ANSWER - 432 ÷ 15 = **28** . **8**

6/3 Use estimates to check calculations

6/4 Factors, multiples & primes

 <u>FACTORS</u> are numbers that divide exactly into another number.

The common factors of 12 & 18 are: 1, 2, 3, 6, The Highest Common Factor is: 6

PRIME NUMBERS have only TWO factors
 e.g. Factors of 7 are: Factors of 13 are
 1
 1
 1

So 7 and 13 are both prime numbers

• MULTIPLES are the times table answers e.g. Multiples of 5 are: Multiples of 4 are: 5 10 15 20 25 4 8 12 16 20

The Lowest Common Multiple of 5 and 4 is: 20

6/5 Order of operations

Bracket
Order
Divide
Multiply
Add
Subtract

Do these in the order they appear

e.g.
$$3 + \frac{4 \times 6}{1} - 5 = 22$$

first

(2 + 1) × 3 = 9

first

6/6 Addition

• Line up the digits in the correct columns

6/6 Subtraction

•Line up the digits in the correct columns

e.g.
$$645 - 427$$
 H T U $6 \frac{3}{4} \frac{15}{5}$ - $\frac{4 \ 2 \ 7}{2 \ 1 \ 8}$

6/7 Equivalent fractions

o To simplify a fraction

Example: $\frac{27}{36}$

First, find the highest common factor of the numerator and denominator, which in this case is 9, then divide:

$$\frac{27}{36} \stackrel{\div 9}{\div 9} = \frac{3}{4}$$

 To change fractions to the same denominator

Example:
$$\frac{3}{4}$$
 and $\frac{2}{3}$

Find the highest common multiple of the denominators, which in this case is 12, then multiply:

$$\frac{3^{x3}}{4_{x3}} = \frac{9}{12}$$
 and $\frac{2^{x4}}{3_{x4}} = \frac{8}{12}$

6/8 Add & subtract fractions

Make the denominators the same

e.g.
$$\frac{1}{5} + \frac{7}{10}$$

= $\frac{2}{10} + \frac{7}{10}$
= $\frac{9}{10}$
e.g. $\frac{4}{5} - \frac{2}{3}$
= $\frac{12}{15} - \frac{10}{15}$
= $\frac{2}{15}$
Do not add denominators

6/9 Multiply fractions

- \circ Write 5 as $\frac{5}{1}$
- Multiply numerators & denominators

e.g.
$$5 \times \frac{2}{3}$$

 $= \frac{5}{1} \times \frac{2}{3}$
 $= \frac{10}{3} = 3\frac{1}{3}$
e.g. $\frac{4}{5} \times \frac{2}{3}$
 $= \frac{8}{15}$

6/9 <u>Divide fractions</u>

REMEMBER:

Keep Change Flip

- \circ Write 5 as $\frac{5}{1}$
- o Invert the fraction after ÷ sign
- Multiply numerators & denominators

e.g. $\frac{2}{3} \div 5$	e.g. $\frac{4}{5} \div \frac{2}{3}$
$=\frac{3}{2}\times\frac{1}{5}$	$=\frac{4}{5}\times\frac{3}{2}$
$=\frac{3}{10}$	$= \frac{12}{10} = 1 \frac{2}{10} = 1 \frac{1}{5}$

6/10 Multiply/divide decimals by 10, 100

thousands	hundreds	tens	ones	•	tenths	hundredths	thousandths
4	3	5	2	•	6	1	7

• To multiply by 10, move each digit one place to the <u>left</u>

e.g.
$$35.6 \times 10 = 356$$

Hundreds	Tens	Ones	•	tenths
	_ 3	_ 5	•	- 6
3 4	5 🖍	6 🔦		

 To <u>divide</u> by 10, move each digit one place to the <u>right</u>

Tens	Ones	•	tenths	hundredths
3 <	5 \	•	6 _	
	1 3	•	1 5	6

- To multiply by 100, move each digit 2 places to the left
- To <u>divide</u> by 100, move each digit 2 places to the <u>right</u>
- To <u>multiply</u> by 1000, move each digit 3 places to the <u>left</u>
- To <u>divide</u> by 1000, move each digit 3 places to the <u>right</u>

6/11 Multiply decimals

Step 1 - remove the decimal point
Step 2 - multiply the two numbers

Step 3 - Put the decimal point back in

6/11 Divide decimals

Use the bus stop method Keep the decimal point in the same place Add zeros for remainders

6/12 Fraction, decimal, percentage equivalents

LEARN THESE:

$$\frac{1}{4}$$
 = 0.25 = 25%

$$\frac{1}{2}$$
 = 0.5 = 50%

$$\frac{3}{4}$$
 = 0.75 = 75%

$$\frac{1}{10}$$
 = 0.1 = 10%

Percentage to decimal to fraction

$$27\% = 0.27 = \frac{27}{100}$$

7% = 0.07 =
$$\frac{7}{100}$$

70% = 0.7 =
$$\frac{70}{100}$$
 = $\frac{7}{10}$

• Decimal to percentage to fraction

$$0.3 = 30\% = \frac{3}{10}$$

$$0.03 = 3\% = \frac{3}{100}$$

$$0.39 = 39\% = \frac{39}{100}$$

Fraction to decimal to percentage

$$\frac{4}{5} = \frac{80}{100} = 80\% = 0.8$$

Change to 100

$$\frac{3}{8}$$
 = 3 ÷ 8 = 8) $3.30^{6}0^{4}0$ = 0.375 = 37.5%

$$\frac{9}{12} = \frac{3}{4} = 0.75 = 75\%$$

6/13 Fraction of quantity

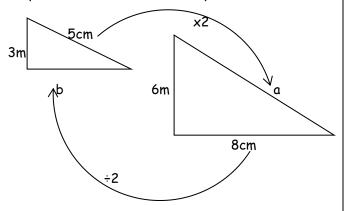
•
$$\frac{4}{5}$$
 means ÷ 5×4

e.g. To find
$$\frac{4}{5}$$
 of £40
5
£40 ÷ 5 × 4 = £40

6/13 Percentage of quantity

Use only

$$\circ$$
 50% - $\frac{1}{2}$


$$\circ$$
 10% - $\frac{1}{10}$

o 1% -
$$\frac{1}{100}$$

Example: To find 35% of £400

6/14 Similar shapes

When a shape is enlarged by a scale factor the two shapes are called SIMILAR shapes

Scale factor =
$$6 \div 3 = 2$$

Length
$$a = 5 \times 2 = 10$$
cm

Length
$$b = 8 \div 2 = 4cm$$

6/14 Unequal sharing

Example- unequal sharing of sweets

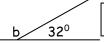
A gets 3 shares

B gets

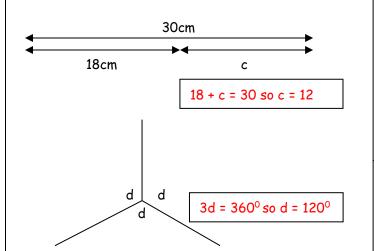
4 shares

=> 3 sweets > ×4 => 12 sweets

4 sweets 3 x4 16 sweets


6/15 Express missing numbers algebraically

An unknown number is given a letter


Examples

$$2a - 4 = 8$$

$$2a = 12$$
 so $a = 6$

$$b + 32 = 180 \text{ so } b = 148^{\circ}$$

6/15 Use a word formula

Example: -Time to cook a turkey Cook for 45min per kg weight Then a further 45min

For a 6kg turkey, follow the formula:

 $45min \times 6 + 45min$

=270min + 45min

=315min

= 5h 15min

6/16 Number sequences

Understand position and term

Position	1 5	2	3	4	
Term	3 🗸	7	11	15	

Term to term rule = +4

Position to term rule is $\times 4 - 1$

(because position $1 \times 4 - 1 = 3$)

 $nth term = n \times 4 - 1 = 4n - 1$

Generate terms of a sequence

If the nth term is 5n + 1

 1^{st} term $(n=1) = 5 \times 1 + 1 = 6$

 2^{nd} term $(n=2) = 5 \times 2 + 1 = 11$

 3^{rd} term $(n=3) = 5 \times 3 + 1 = 16$

6/17 Possible solutions of a number sentence

Example: x and y are numbers

Rule: x + y = 5

Possible solutions: x = 0 and y = 5

x = 1 and y = 4

x = 2 and y = 3

x = 3 and y = 2

x = 4 and y = 1

x = 5 and y = 0

6/18 Convert units of measure METRIC

When converting measurements follow these rules:

- · When converting from a larger unit to a smaller unit we multiply (x)
- · When converting from a smaller unit to a larger unit we divide (÷)

UNITS of LENGTH

10mm = 1cm

100cm = 1m

1000m = 1km

UNITS of MASS

1000kg = 1tonne

1000ml = 1 litre

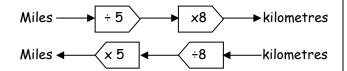
1000g = 1kg

UNITS of VOLUME

UNITS of TIME

60sec = 1 min

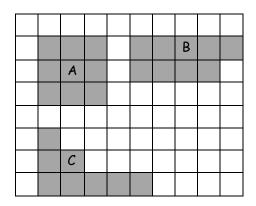
60min = 1 hour


24h = 1 day

365days = 1 year

100cl = 1litre

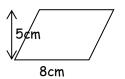
6/19 Convert units of measure METRIC/IMPERIAL


5 miles ≈ 8km LEARN:

6/20 Perimeter and area of shapes

Shapes can have the SAME area but different perimeters

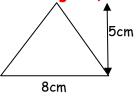
The area of each shape is 9 squares


Perimeter of each shape is different A - 12: B - 14: C -16

6/21 Area of parallelogram & triangle

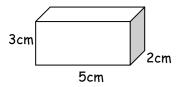
Area of parallelogram

Area of parallelogram = $b \times h$ $=8 \times 5$



Area of triangle $(\frac{1}{2}$ a parallelogram)

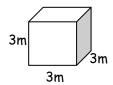
Area of triangle = $\frac{1}{2}$ (b x h) $=\frac{1}{2}(8\times5)$



6/22 Volume

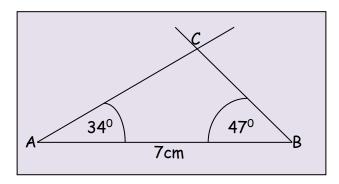
Volume of cuboid

Volume = $1 \times w \times h$ $=5\times3\times2$

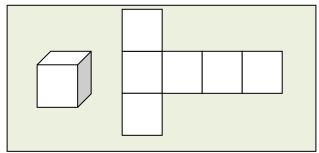

 $= 30 cm^3$

Volume of cube

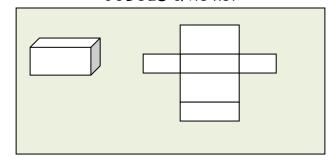
Volume = $1 \times w \times h$ $= 3 \times 3 \times 3$


 $= 27m^3$

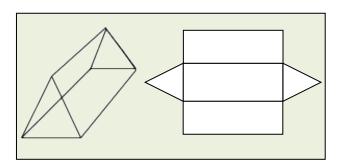
6/23 Construct 2D shapes


Example: Triangle with side and angles given

- Draw line AB = 7cm
- o Draw angle 34° at point A from line AB
- o Draw angle 47° at point B from line AB
- Extend to intersect the lines at C



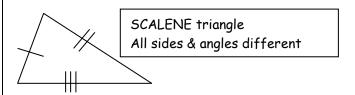
6/23 Construct 3D shapes

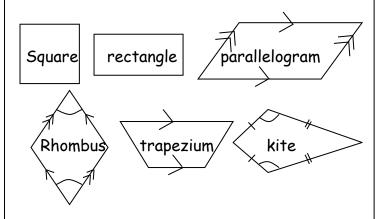

CUBE & its net

CUBOID & its net

TRIANGULAR PRISM & its net

6/24 Properties of shapes


TRIANGLES - sum of angles = 180°


ISOSCELES triangle 2 equal sides & 2 equal angles

EQUILATERAL triangle 3 equal sides & ALL angles 60°

QUADRILATERALS - sum of angles = 360°

REGULAR POLYGONS - all sides the same

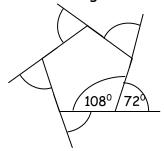
- Polygons have straight sides
- Polygons are named by the number of sides

3 sides - triangle

4 sides - quadrilateral

5 sides - pentagon

6 sides - hexagon

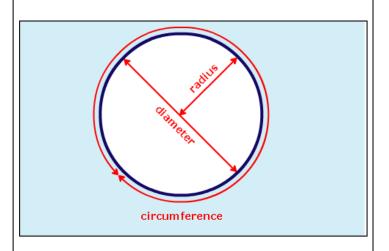

7 sides - heptagon

8 sides - octagon

9 sides - nonagon

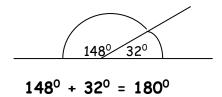
10 sides - decagon

Sum of exterior angles is always 360°

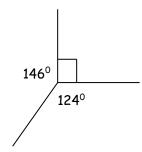


- \circ interior & exterior angle add up to 180°
- o the interior angles add up to:

Triangle =1 x 180° = 180° Quadrilateral =2 x 180° = 360° Pentagon =3 x 180° = 540° Hexagon =4 x 180° = 720° etc

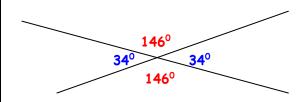

6/25 Parts of a circle

- The circumference is the distance all the way around a circle.
- The diameter is the distance right across the middle of the circle, passing through the centre.
- The radius is the distance halfway across the circle.
- The radius is always half the length of the diameter. $(d = 2 \times r)$ or $(r = \frac{1}{2} \times d)$

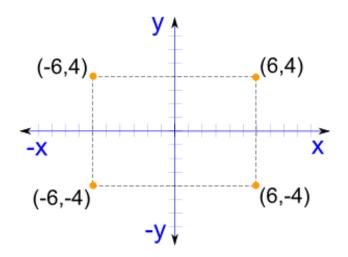


6/26 Angles and straight lines

Angles on a straight line add up to 180°



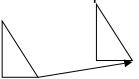
Angles about a point add up to 360°



$$146^{\circ} + 90^{\circ} + 124^{\circ} = 360^{\circ}$$

Vertically opposite angles are equal

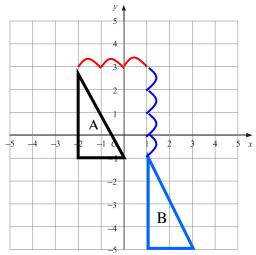
6/27 Position on a co-ordinate grid



REMEMBER!

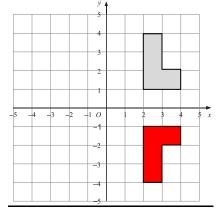
Plot x axis first, then y axis
 Go along the corridor and up the stairs!

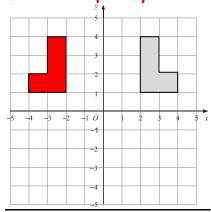
6/28 Transformations


o Translation - A shape moved along a line

Example - Move shape A 3 right & 4 down

Can also be written as a vector (3) Right

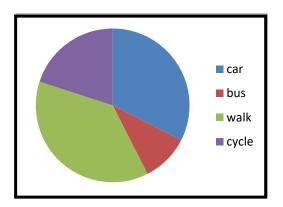

Down


Notice:

- o The new shape stays the same way up
- The new shape is the same size

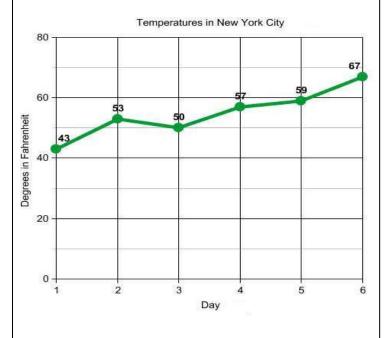
Reflect a shape in x-axis

Reflect a shape in y-axis



6/29 **Graphs**

Pie chart


Transport	Frequency	Angle
Car	13	13 × 9=117 ⁰
Bus	4	4 × 9=36°
Walk	15	15 x 9=135
Cycle	8	8 × 9=72

Total frequency = 40 $360^{\circ} \div 40 = 9^{\circ}$ per person

o Line graph

Line graphs show changes in a single variable - in this graph changes in temperature can be observed.

6/30 The mean

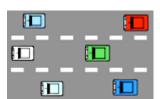
The mean is usually known as the average. The mean is not a value from the original list.

It is a typical value of a set of data

Mean = total of measures \div no. of measures

e.g.- Find mean speed of 6 cars travelling on a road

Car 1 - 66mph


Car 2 - 57mph

Car 3 - 71mph

Car 4 - 54mph

Car 5 - 69mph

Car 6 - 58mph

= 62.5mph

Mean average speed was 62.5mph